منابع مشابه
The Bernoulli Sieve Revisited
We consider an occupancy scheme in which “balls” are identified with n points sampled from the standard exponential distribution, while the role of “boxes” is played by the spacings induced by an independent random walk with positive and nonlattice steps. We discuss the asymptotic behavior of five quantities: the index K n of the last occupied box, the number Kn of occupied boxes, the number Kn...
متن کاملThe Bernoulli sieve: an overview
The Bernoulli sieve is a version of the classical balls-in-boxes occupancy scheme, in which random frequencies of infinitely many boxes are produced by a multiplicative random walk, also known as the residual allocation model or stick-breaking. We give an overview of the limit theorems concerning the number of boxes occupied by some balls out of the first n balls thrown, and present some new re...
متن کاملSmall parts in the Bernoulli sieve
Sampling from a random discrete distribution induced by a ‘stick-breaking’ process is considered. Under a moment condition, it is shown that the asymptotics of the sequence of occupancy numbers, and of the small-parts counts (singletons, doubletons, etc) can be read off from a limiting model involving a unit Poisson point process and a self-similar renewal process on the halfline.
متن کاملSieve Methods Lecture Notes, Part I the Brun-hooley Sieve
A sieve is a technique for bounding the size of a set after the elements with “undesirable properties” (usually of a number theoretic nature) have been removed. The undesirable properties could be divisibility by a prime from a given set, other multiplicative constraints (divisibility by a perfect square for example) or inclusion in a set of residue classes. The methods usually involve some kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2009
ISSN: 1050-5164
DOI: 10.1214/08-aap592